Confidence Intervals Sections 16.1, 16.2

Lecture 30

Robb T. Koether

Hampden-Sydney College

Mon, Mar 14, 2016

- The Reasoning
- 2 Example
- Summary
- Assignment

- The Reasoning
- 2 Example
- 3 Summary
- Assignment

Reasoning

- How do we use a sample mean \overline{x} to estimate a population mean μ ?
- The value \overline{x} gives us a point estimate of μ , but provides no indication of how reliable that point estimate is.
- We would rather have an interval estimate, which is the point estimate, plus or minus a margin of error.

The Margin of Error

Fact

The distance from \overline{x} to μ is the same as the distance from μ to \overline{x} .

- Therefore, if there is a 95% chance that \overline{x} is within 3 units of μ , for example, then there is a 95% chance that μ is within 3 units of \overline{x} .
- The principle allows us to use either one of the formulations.

- 1 The Reasoning
- 2 Example
- 3 Summary
- Assignment

- Suppose that (somehow) we know that a large set of test scores has a standard deviation of $\sigma=$ 12, but we do not know the mean μ .
- We plan to take a sample of size n = 100 and compute the sample mean \overline{x} .
- What can we say about \overline{x} before we compute it?

Example (Test Scores)

• The sampling distribution of \overline{x} is normal with mean μ and standard deviation

$$\frac{\sigma}{\sqrt{n}} = \frac{12}{\sqrt{100}} = 1.2.$$

- What is the probability that \overline{x} is within 2 standard deviations of μ ?
- That is, that \overline{x} is between μ 2.4 and μ + 2.4?
- By the 68-95-99.7 Rule, the probability is 95%.

- ullet Because there is a 95% chance that \overline{x} is within 2.4 points of $\mu...$
- ... it follows that there is a 95% chance that μ is within 2.4 points of \overline{x} .

- Now we take our sample and find that $\overline{x} = 82.5$.
- So there is a 95% chance that μ is between \overline{x} 2.4 and \overline{x} + 2.4.
- That is, a 95% chance that 80.1 $\leq \mu \leq$ 84.9.

- Now we take our sample and find that $\overline{x} = 82.5$.
- So there is a 95% chance that μ is between \overline{x} 2.4 and \overline{x} + 2.4.
- That is, a 95% chance that 80.1 $\leq \mu \leq$ 84.9.
- Actually, we should say that we are 95% confident that μ lies between 80.1 and 84.9.

- The Reasoning
- 2 Example
- Summary
- 4 Assignment

Summary

• Let the population have mean μ and standard deviation σ and let n be the sample size.

Summary

- Let the population have mean μ and standard deviation σ and let n be the sample size.
- Then \overline{x} , as a random variable, has a normal distribution with mean μ and standard deviation σ/\sqrt{n} .

Summary

- Let the population have mean μ and standard deviation σ and let n be the sample size.
- Then \overline{x} , as a random variable, has a normal distribution with mean μ and standard deviation σ/\sqrt{n} .
- Using the 68-95-99.7 Rule, we say that 95% of the intervals

$$\overline{x} \pm 2 \left(\frac{\sigma}{\sqrt{n}} \right)$$

generated from simple random samples will contain μ and the other 5% will not contain μ .

Summary

- Let the population have mean μ and standard deviation σ and let n be the sample size.
- Then \overline{x} , as a random variable, has a normal distribution with mean μ and standard deviation σ/\sqrt{n} .
- Using the 68-95-99.7 Rule, we say that 95% of the intervals

$$\overline{x} \pm 2 \left(\frac{\sigma}{\sqrt{n}} \right)$$

generated from simple random samples will contain μ and the other 5% will not contain μ .

• When we generate a single such interval, we say that we are 95% confident that it contains μ .

- 1 The Reasoning
- 2 Example
- Summary
- Assignment

Assignment

Assignment

- Read Sections 16.1, 16.2.
- Apply Your Knowledge: 1, 2, 4.